Course Schedule

Weekday Regular Schedule

Group Type Hours Location
01 Lecture Tue 12-15 אולם מירון, טרובוביץ 102, הפקולטה למשפטים
02 Recitation Wed 11-12 שנקר פיזיקה 222
03 Recitation Wed 12-13 שנקר פיזיקה 222

Lectures and Recitations

Week Dates Crypto Subject Mathematics Background Recitation
1 Nov 1,2 Popular introduction to Modern Crypto;
Administrativia, course topics, etc. Lecture1
שירה וריקודים בחסות אגודת הסטודנטים Recitation1
2 Nov 8,9 Perfect and computational indistinguishably. Pseudo random generators and one way functions. Stream Ciphers. Updated Nov 13. Lecture2. Shannon 1948 paper Integer gcd and extended integer gcd. Modular operations in the ring $(\mathbb{Z}_m,+_{\pmod m},\cdot_{\pmod m})$. Recitation2. A (non-mandatory) exercise on groups Groups. Sage_log
3 Nov 15, 16 Stream Ciphers. Pseudo random generators and bit commitment. Pseudo random functions and permutations. Linear feedback shift registers. Block Ciphers. Lecture3 Groups and Lagrange theorem. Recitation3 (Updated: Nov. 16).
4 Nov 22, 23 Finite fields. Pseudo random functions and pseudo random permutations. Block Ciphers and modes of their operation. Updated Nov 23. Lecture4 Euler totient function $\phi(n)$. The multiplicative group $\mathbb{Z}^*_m$. Euclid's gcd: Time analysis. Extended gcd Python code. Recitation4
5 Nov 29, 30 Feistel networks; DES and AES; Iterated ciphers; Message authentication codes. Cryptographic hash functions; Lecture5 Recitation5
6 Dec. 6, 7 Cryptographic hash functions; The discrete logarithm problem; Diffie Hellman key exchange; Primality testing. The RSA public key cryptosystem. Lecture6 The prime numbers theorem. Recitation6
7 Dec. 13, 14 The multiplicative group $\mathbb{Z}^*_{pq}$. The RSA public key cryptosystem. The Chinese Remainder Theorem (CRT). Quadratic residues and non residues in $\mathbb{Z}^*_{pq}$. The quadratic residuosity assumption, and a public key probabilistic encryption scheme based on it. Lecture7 Recitation7
8 Dec 20,21 Self reducibility of RSA. Pollard's $\rho$ algorithm for integer factoring. Shank's baby-step giant-step algorithm for discrete log. ElGamal public key crypto system. Digital signature schemes. Lecture8 Bit security for discrete exponentiation
9 Dec 27, 28 Digital signature schemes. Intro to zero knowledge proofs. Lecture9 Recitation9 (Updated-28.12 after recitation)
10 Jan 3, 4 Interactive proof systems. Power point presentation by Prof. Safra. Zero knowledge proofs. Pdf presentation by Prof. Herlihy. Lecture10 (slightly modified, Jan. 8). The story of PCPs by Ryan O'donnel Recitation10 (Updated-4.1 after recitation)
11 Jan 10, 11 Secret sharing and threshold cryptography. Intro to multi party computation Lecture11. Lagrange polynomial interpolation. Continue recitation10
12 Jan 17, 18 Oblivious transfer and Yao's garbled circuit evaluation. Proof of Work. Timed release cryptography. Visual secret sharing. Lecture12. Recitation12
13 Jan 24, 25 Intro to bitcoin and blockchain a presentation by by Stefan Dziembowski, University of Warsaw, and a survey by Aviv Zohar, Hebrew University. Partial solution (on the board) to the exam from February 13, 2002. Concluding remarks. Lecture13 Recitation13
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License